EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

' Choosmg the

right netcode for
your Unity
' multlplayer game




There’s no perfect, one-size-fits-all netcode solution for all multiplayer games
and experiences. Each game must account for the network-related challenges
that impact players’ experience, such as latency, packet loss, and scene
management, and games solve these challenges in a variety of ways. Finding
the right solution depends on your game’s genre, the scale of its players and
networked objects, competitiveness, and other aspects, like how much control
is needed over the networking layer.

We created this guide to help developers new to the Unity multiplayer area to
evaluate the options and decide which netcode solution (or combination of
solutions) best suits a title’s needs. Using data drawn from surveys and in-depth
interviews with Unity users as well as in-house prototyping, we've rated the
performance of some of the most popular netcode solutions in key areas.

Read on to learn about users’ insights and experiences after launching
multiplayer games with popular netcode solutions, and see how users and

customers rank these solutions’ strengths and weaknesses:

MLAPI

DarkRift 2

Photon PUN

Photon Quantum v2

Mirror

A high-level comparison table can be found here

Data sources

This document details the analysis and evaluation process that our team used to

recommend third-party netcode solutions for multiplayer games built with Unity.
The team gathered and analyzed data from three sources:

— A survey of over 200 Unity users, in which we asked about their
experiences with specific netcode frameworks

— 20 in-depth interviews with users actively shipping multiplayer games
with Unity

—  Learnings from prototypes we built with MLAPI, DarkRift 2, and
Photon Quantum

Based on the data, we scored and ranked the alternatives based on the
following variables:

—  Overview and overall recommendation

© 2020 Unity Technologies

2 0f 15 | unity.com


https://unity.com/

—  Stability and support

—  Ease of use

—  Performance and latency

—  Scalability

—  Feature breadth

—  Extensibility, debugging and contributing
—  Console platform support

—  Cost (and hidden costs)

Note: To get the most of this comprehensive overview, you should be familiar
with key multiplayer and networking concepts. This talk highlights most of the
essentials.

MLAPI

MLAPI (Mid-level API) is an open source networking library that offers a

great breadth of mid-level features like NetworkedVars, scene management,
remote procedure calls (RPCs), messaging, and more. This solution offers an
abstraction layer to enable the swapping of different transports depending on
the topology and platforms you plan to ship with. The solution assumes some
form of client-server topology — either a dedicated game server (DGS, where
clients connect and interact with the game on a central server) or a Listen
Server (where one client hosts the server for the match).

By default, MLAPI assumes that you're using a Unity headless runtime for your
server runtime, which enables you to write your physics or simulation just once,
then use it for both the client and server.

Overall recommendation % % % % %

MLAPI is the most well-rounded, high-quality solution we've found on the
market today. It has great feature breadth at the mid-level, it's open source, its
Discord community is active and very helpful, and the codebase is clean and
well documented. As a result, it’s quite feasible to start with MLAPI and extend
or modify the solution to meet your needs. For most games shipping with Unity
today, we would recommend trying MLAPI first.

Stability and support % % % % %

MLAPI is a relatively new solution —its 1.0 version launched in April 2018. Since
then, bug fixes and new features have been added and updated rapidly. The
creator and others on the Discord channel respond to questions and issues
quickly, and most developers who try MLAPI have positive things to say about
its support and stability.

© 2020 Unity Technologies

3 0f 15 | unity.com


https://unity.com/
https://www.youtube.com/watch?v=CuQF7hXlVyk
https://mlapi.network/
https://discord.gg/FM8SE9E

Ease of use * % % %k %

MLAPI as a mid-level solution will already be much easier to use than something
that has only low-level features. However, it’s missing the Unity samples,
tutorials, and richer step-by-step guides that many users need to successfully
get started with their first multiplayer game. It also does not yet offer a smooth
migration path for existing games that already use UNet HLAPI (High Level API).

Performance and latency % % % % %

MLAPI has been very careful to minimize garbage collection and allocations,
optimize performance regularly, and keep its codebase clean. As a result, users
report few or no challenges achieving their latency goals with MLAPI. Our own
performance profiling confirmed the no-allocations claim. Users reported that
fast-paced games have succeeded at hitting goals of ~50-100 ms latency.

Scalability % % % %

MLAPI unfortunately does not support multithreading by default, so it's not clear
how far it will be able to scale in number of players or networked objects per
session in shipping (non-sample) games. We know of at least one game that has
succeeded at 64 players per session with MLAPI. Overall, it has good scalability
as long as you avoid using convenience RPC APlIs , since those leverage
“boxing” that can increase allocations and subsequent GC spikes.

Feature breadth * % % % %

In the mid-level, MLAPI is very feature rich. You can see the full list here, and its
key features include:

—  NetworkVars, SyncVars

— RPCs

—  Scene management

— Messaging system

— Relay (which you can self-host)
At higher levels, however, lag compensation and delta compression are only
partially supported, and many games may still need to create their own solutions
for features like forward prediction. Unfortunately, we have not found any

sufficiently stable and performant solutions on the market today with these
high-level (HL) features.

Extensibility, debugging and contributing % % % % %

MLAPI is a fully open source project, so it’s very easy to debug, add project-
specific features, and contribute if you are willing to share your work.

Console platform support * % % > >

While MLAPI doesn’t advertise console support out of the box, its abstraction
layer for transports allows you to attach transport layers to work with various

© 2020 Unity Technologies

4 0f 15 | unity.com


https://unity.com/
https://mlapi.network/features/
https://github.com/MidLevel/MLAPI/releases/

consoles, Steam, and so on. We've spoken to developers who have successfully
shipped with a few different supported transports and were able to work with
many different platforms.

Cost (and hidden costs)
Listen Server %k k%% orDGS * % % %%

This solution is fully open source and free, although it does not offer any hosted
services (like dedicated server hosting or relay). The hidden costs lie in the
services you need and how you choose to manage them.

If, for example, you want a completely free solution, MLAPI supports listen-
server topology and makes it fairly easy to swap in the transport layers for
each of the platforms that offer free relay services, like Steam, Xbox, and more.
However, going this route will mean cross-play is not possible (i.e., Steam
users cannot play with Xbox users). So, to offer that ability, you can still use

MLAPI, but it will need to be connected to a paid relay and transport like Photon

Realtime.

However, if you want cheat prevention and larger player scale, you can use
MLAPI with a DGS topology, but then server hosting costs with Multiplay or
another hosting service will be more expensive than using a relay.

Back to top 1

DarkRift 2

DarkRift 2 is a fast and highly performant low-level networking solution — key
features include bi-channel TCP and UDP, serialization, and customizable
logging. The solution assumes a dedicated server topology, and it includes a
multithreaded server runtime that can be extended with plug-ins. It is possible
to use DarkRift with a Unity-based server and still use the plug-in system.

The entire solution is multithreaded by default, making it one of the most
scalable solutions available. However, it does not use Unity’s new C# Job
System for its multithreading, so it does take additional learning and conversion
to use the two together.

Overall recommendation % % % % %

If you are a savvy developer who needs high performance and scalability, and
you prefer to write your own mid- to high-level netcode on top of a stable
baseline lower level, then DarkRift is a very strong solution that has proven
production quality.

In addition, if you want a non-Unity server runtime to achieve greater efficiency,
DarkRift also provides a highly performant solution for a server. Some users
have managed to run it multi-tenanted when they wanted to optimize server
footprint even further.

© 2020 Unity Technologies

5 of 15 | unity.com


https://unity.com/
https://partner.steamgames.com/doc/features/multiplayer
https://www.photonengine.com/en-us/Realtime
https://www.photonengine.com/en-us/Realtime
https://unity.com/multiplay
https://www.darkriftnetworking.com/darkrift2

Stability and support % % % % %

DarkRift 2 launched in July 2017 and has remained in development since then.
It has a strong Discord community with many active developers and moderators
who are ready to help and answer questions at any time. Users have given a lot
of positive feedback about the support for this solution.

Ease of use % % % % %

Because DarkRift 2 is a lower-level solution, it will be inherently more difficult
for new users to learn, and most users will need to be comfortable building
additional netcode on top of DarkRift 2.

That said, there are tutorials and decent documentation, so users have been
pleased with the ease of getting started with DarkRift 2.

Performance and latency % % % % %

This solution was highly rated for performance, and our own investigation found
that it has relatively low garbage collection and allocations, which can cause
performance issues and latency spikes in more complex games. We hear that
very fast-paced games have succeeded at hitting goals of ~50 ms latency.

Scalability % % % %

Of all the solutions, users rated DarkRift as the most scalable solution available
today. Its multithreading by default gives it a distinct advantage over most other
solutions.

Feature breadth * % % ¥ >

DarkRift 2 is a low-level solution, with a reasonable breadth of features.
However, it doesn’t offer any of the mid- or high-level features you may want,
like NetworkVars, RPCs, and so on. And, as a low-level solution, it does not
offer a reliable UDP channel out of the box, instead using TCP for reliable
communication.

Extensibility, debugging and contributing % % % % %

You can purchase full source access for $100 on the Unity Asset Store, so it's
possible to fully debug, extend, and modify the source to DarkRift 2. However,
it is not an open source project at this time, and community members cannot

contribute bug fixes back to the codebase.

Console platform support * % 5 % *

As a low-level solution, we'd hope to see clear methods for supporting console
platforms, but this solution unfortunately does not appear to be ready to pass
console certification out of the box. It should be feasible to plug in a different
transport that is capable of supporting consoles, but we have not spoken with
any users who have successfully done so.

© 2020 Unity Technologies

6 of 15 | unity.com


https://unity.com/
https://discordapp.com/invite/cz2FQ6k

Cost (and hidden costs) * % % % %

DarkRift 2 is free for a subset of features and no source access, and it costs a
one-time fee of $100 to gain access to the code and full features. Its hidden
costs are dedicated server hosting (not provided by the solution), which can be

expensive depending on the provider or how you host it.

Back to top 1t

Photon PUN

Photon PUN is essentially a mesh topology solution (a.k.a. direct P2P), in which
each client synchronizes everyone else’s data.

It includes a relay service to avoid NAT traversal issues, referring to the relay
as a "Master Server.” This term can be misleading, since the relay/server is
not doing any synchronization logic. It has the ability to run simple logic on
the Master Server via plug-ins to check and modify messages as these pass
through, which could be used for cheat detection (but not cheat prevention as
with a DGS).

The benefit of a mesh topology is that there’s no single host/server to manage.
However, the downside is that every client has to manage the synchronization
logic of every other player, which limits the scale of the game, and there is no
server authority to prevent cheating. This means that this solution has some
inherent risks, and adopting this topology can make it very hard to transition
later to a server-authoritative model.

Overall recommendation * % % % %

Users who love PUN appreciate its simplicity and often describe it as dead
simple. If you are making a 2-4 player game that is cooperative or very casual,
this solution may be sufficient for your needs. Hobbyist and student projects
might also appreciate the ease of use and rapid onboarding. However, choosing
this solution will make it very difficult to later convert to a client-server topology,
and your game will always be locked at a small scale (maximum 8 players).

Stability and support % % % % %

Exit Games (the company behind all Photon products) has existed for some
time, and PUN is a fairly stable solution with minimal bugs or issues. However,
users cite challenges getting support for questions and issues, and there
doesn’t seem to be as strong a community as MLAPI or DarkRift has fostered.

Ease of use % % % % %

Photon PUN is regularly called out as the simplest solution to get started,
boasting a strong Unity SDK, tools, and very simple interfaces.

© 2020 Unity Technologies

7 of 15 | unity.com


https://unity.com/
https://doc.photonengine.com/en-us/pun/current/getting-started/pun-intro
https://doc.photonengine.com/en-us/server/current/plugins/manual

Performance and latency * % % % %

Users say latency can sometimes be problematic with PUN, so it may not be
viable for very fast-paced games. However, if your game can tolerate moderate
latency of 150-200 ms, this solution may still be sufficient.

Scalability * % % % %

A direct P2P topology struggles with scale in any implementation, and it
depends on the capabilities of the client hardware and what you are willing to
sacrifice (in terms of compute) to handle more synchronization logic on each
client. In general, most users who find success with mesh topology games have
a maximum of 4-8 players per session, and that’s true for PUN users as well.

Feature breadth * % % % %

PUN is essentially a full-featured mid-level solution for mesh topology games
that includes key features such as:

— RPCs
—  Serialization

— Hosted relay and simple matchmaking

However, higher-level features like prediction and delta compression are
missing.

Extensibility, debugging and contributing * > > >

Photon PUN is closed source, so it's impossible to step through to debug code.
Extension beyond their plug-in system is also not possible, as is rewriting or
optimizing directly. Since this is not an open source community project, there is
no way to contribute back to Photon PUN.

Console platform support % % % % %

Photon is supported on most major platforms, including being a supported
middleware provider for major consoles.

Cost (and hidden costs) % % % % %

Photon PUN is free to try up to 20 concurrent users, after which you can pay

a one-time fee of $95 for 100 concurrent users per month, and $0.29 per user
beyond that. While this is not free, it is fairly low cost relative to DGS solutions.

It's important to note that this solution is closed source and requires you use
their relay for every player. The upside is that cross-play is feasible across

platforms. The downside is that you will never be able to leverage the free relays
on many platforms (like Steam or Xbox) to reduce costs.

Back to top 1

© 2020 Unity Technologies

8 of 15 | unity.com


https://unity.com/

Photon Quantum v2

Photon Quantum is essentially the simulation portion of a game engine focused
on the core functionality required for deterministic rollback games. Quantum

v2 uses an Entity Component System (ECS) and multithreading systems that
are not the same as Unity’s ECS and Job System, and to use Quantum you
must be willing to use their fixed-point math, physics, pathfinding, and other
simulation libraries instead of Unity libraries. The solution relies on Unity for the
presentation and Editor, however, and there can be some challenges converting
between the two.

In deterministic rollback solutions, only user inputs are sent (i.e., pressed x
instead of shot in y direction), and every other user accepts those inputs

and runs their version of the simulation locally. On each client, it runs logic to
predict and visualize where other players may be while waiting for new inputs,
then it rolls back the simulation to replay and correct the positions once inputs
arrive. This gives a smoother feel than pure lockstep. Because of determinism
in simulation, you can ensure the simulations stay in sync on each device, and
even if a user tries to cheat and boost their character, this will impact only their
local simulation but not that of others. Quantum also allows some ability to run
the same simulation on a server to act as a referee.

The biggest drawback to this system is the heavy reliance on client hardware to
handle all of the synchronization, prediction, and rollback computation for every
other player in the entire simulation. This means that your scale will be limited
by the power of the game clients. So, realistically, you can likely run only small-
scale games on mobile and larger ones (they claim it's proven up to 32 players)
on heartier PCs or consoles. Fixed-point math, relatively simple physics, and
2D-only navmesh and pathfinding may also deter simulation-heavy or complex
games where precision matters (like FPS) from using this solution.

Overall recommendation % % % % %

This solution seems solid for games that do best with deterministic rollback
solutions with 2D-ish views (including top-down) — typically RTS, MOBA, Clash
Royale, or fighting games. The pricing is likely less than a DGS topology for the
same genres and ultimately may be worth it for these kinds of games, though it
is considerably more expensive than other solutions for simpler games.

Stability and support % % % % %

Users of Photon Quantum v2 state that even though there are still some bugs,
the team has been quick to resolve issues, and there seems to be ongoing
growth. It's generally perceived as a more stable alternative to Unity’s own
deterministic/ECS libraries for the time being. Unfortunately, Photon solutions
lack the thriving communities of other offerings.

Ease of use % % % % %

In our own prototyping, we were able to achieve a fully functioning prototype
RTS game within ~1 week of person-hours, and it has been described as quite

© 2020 Unity Technologies

9 of 15 | unity.com


https://unity.com/
https://doc.photonengine.com/en-us/quantum/current/getting-started/quantum-intro

easy to use overall. The fact that you only send inputs makes the networking
part of the solution easier to achieve, although the ECS simulation and
synchronization logic reintroduce some complexity.

Performance and latency % % % % %

Quantum uses the same core infrastructure as PUN - i.e., relay and transport,
and we know that there are people who have had latency issues with the Photon
cloud when using Bolt/PUN, so that may also apply to Quantum.

That said, the perceived latency with Quantum is lower than with a standard
P2P architecture because Quantum’s prediction model predicts the entire game
state.

In addition, Quantum has very minimal garbage collection and allocations. The
performance of the system is generally good because it uses a memory-aligned
ECS for calculating the game state, but compared to DGS solutions, Quantum
will often perform worse because it has to simulate everything on the client.

This solution is likely sufficient for reasonably fast-paced games.

Scalability * % % % %

As mentioned above, scalability is one of the biggest challenges with this
topology, especially if you want the game to work on low-powered mobile
devices. In the showcase of games we’ve seen for Quantum, most stay within
4-6 players per session, although it seems that at least one has been able to hit
as high as 32 players per session.

Feature breadth * % % % %

Quantum is a full-featured solution for deterministic rollback games; most critical
features exist today.

However, reliance on fixed-point math, relatively simple physics, and 2D-only
navmesh means they require more features before they’re ready to support
additional genres beyond typical RTS, MOBA, Clash Royale, or fighting games.

Extensibility, debugging and contributing * % > % %

Photon solutions are not full source, and therefore do not enable you to step
through to identify and fix bugs yourself. Similarly, since it's not an open
source project, users cannot contribute fixes back to the repository. However,
the Quantum solution enables developers to tailor game code to their game
reasonably well, and some users cite that the black box was at least a
predictable black box, so they could extend it fairly easily.

Console platform support * % % % %

All Photon solutions depend on real-time transport, relay, and matchmaking,
which means console and cross-play are feasible from the outset. It's worth
noting that Quantum cannot support WebGL.

© 2020 Unity Technologies

10 of 15 | unity.com


https://unity.com/

Cost (and hidden costs) * % % % %

Quantum costs $1000 per month for five seats, and $0.50 per concurrent

user. This means that for larger teams, the development costs could get quite
expensive. However, the operating costs are likely lower than most DGS hosting
fees for operating the same kinds of genres, so this still may be a reasonable
path for some games.

Back to top 1t

Mirror

Mirror is a fork of the now deprecated UNet HLAPI that has evolved and been
adopted and supported by the community. It focuses on supporting client-
server topology games and offers a number of mid-level features like SyncVars.

Overall recommendation % % % Y %

Mirror is easy-to use and has a great community. Customers highlighted it as a
particularly solid solution if you have an existing game that is using UNet HLAPI
successfully, and you want to move to something that is better supported.
Users voiced concerns about scalability and performance, but some of these
might be solved by recent versions of the framework.

Stability and support % % % % %

Of all the solutions, Mirror currently has the largest and most active Discord
community. This is one of the greatest benefits of Mirror, and many users note
how great this community is. In addition, since forking from HLAPI, many bugs
have been fixed, so the solution is much more stable than it was previously.

Ease of use % % % % >

Mirror is relatively easy to use, with a good number of samples and improved
documentation from the past. Overall, many users find it easy to get started
with Mirror.

Performance and latency % % % % %

In our survey, users repeatedly cited room for improvement on memory
management and GC/allocations as a core concern for achieving high
performance and scale.

Scalability % % % % %

Users rated Mirror moderately low for scalability, citing memory management
and a general belief that the scaling for this solution needs to be improved

for larger games. However, it has also been utilized in some titles that scale
reasonably well, so these comments from users may have been based on prior
versions of the library.

© 2020 Unity Technologies

110f 15 | unity.com


https://unity.com/
https://mirror-networking.com/
https://discord.gg/N9QVxbM
https://discord.gg/N9QVxbM

Feature breadth * % % % %

As a mid-level set of features, Mirror is reasonably complete, with key features
that include:

— SyncVars
— RPCs

—  Multiple transports supported

Additionally, high-level features like prediction or delta compression are missing
from the core, although there are high-level features available in paid Asset
Store packages.

Extensibility, debugging and contributing % % % % %

Mirror is a fully open source project, so it’s possible to debug it directly and
contribute fixes back to the community. Customers mentioned that the code
is not ideal for modification and extension, however they also noted a good
number of third-party integrations. For more information, check the integration
notes here.

Console platform support * % % s %

Mirror on its own does not support consoles. However, it supports a wide variety
of transports that may make it feasible to support console platforms.

Cost (and hidden costs)
Listen Server *x %k % %% orDGS * % %%

Mirror is free, though like MLAPI, hidden costs lie in the services you need and
how you choose to manage them. It's potentially free if you're using a listen-
server topology or fairly expensive with DGS.

Back to top 1™

Comparison table ¥

© 2020 Unity Technologies

12 of 15 | unity.com


https://unity.com/
https://mirror-networking.com/docs/

Comparison table

Stability/ Ease-of- Perfor- Scalability Feature Customers

support use mance breadth recommend for

MLAPI dhk Ak hk | hkkkd | hkkkk | kkkkk | kkkkxk | Free Most client-server
games for up to ~64
players that want a
stable breadth of
mid-level features

DarkRift 2 Kok ko k [ ek ok Aok | kokkkok | dkkokokok | kokkok X | $100 Games with high perf/
for source scale requirements
that want to build on a
stable LL layer

Photon PUN Kk kok | hkokkok | kkkokk | ko | kkkk %k | $0.30/PCU | Simple and small
(2-8 players) mesh-
topology games

Photon Kk kK | kkkkk | kokkkk | kk KKk | kkkkk | $1000/mo | Games desiring
Quantum 2.0 + deterministic roll-
$0.50/PCU | back, like MOBA
games, for up to 32
players

Mirror Kk kokk | kkokkok | dokkokk | kkkkok | dkkkkk | Free Stable and proven
client-server solution,
loved best for its
community and
ease-of-use

* Note that Photon pricing provides access to the networking libraries and services, whereas other
solutions are standalone networking libraries, and the cost of services is separate.

© 2020 Unity Technologies 13 of 15 | unity.com


https://unity.com/

Last thoughts

Keep in mind that there’s no perfect, one-size-fits all
solution for all kinds of games and experiences. As a
developer, you need to evaluate the options and decide
which netcode solution — or combination of solutions —
best suits your title’s needs. In many cases, you'll have to
extend or customize an existing netcode framework.

This guide aims to help accelerate your path to a
successful decision, but you should still perform your
own evaluation based on the specifies of your game.
We'd love about this guide!


https://unity.com/
https://forum.unity.com/threads/networking-feedback-and-questions.555070/

unity.com


https://unity.com/
https://unity.com/

