
A DevOps approach to error monitoring and reporting

U N I T Y F O R D E V O P S ⟶ E - B O O K

B U G S &
A U T O M A T I O N :
T H E N E X T
G E N E R A T I O N
O F Q A

© 2021 Unity Technologies — 2

I N T RO D U C T I O N

Every game developer knows the pain of debugging.
This necessary-but-tedious process ultimately
improves your chances of launching a successful
game, but when you’re toiling away fixing your code,
it’s hard not to think, “There are better ways I could be
using my time.”

Fortunately, there are many opportunities to optimize
your development pipeline, so you can spend less time
worrying about catching and squashing every little bug
and still go to market with an amazing game.

Upgrading your DevOps solutions and automating
development processes like error monitoring and
reporting can give you a big chunk of your precious
time back.

Bug and error tracking will always be a part of making
games, but automating the process can help your team
focus their attention elsewhere. With the right set of
tools, bugs turn into signposts that point you toward
optimized code and a better product. The earlier
you implement error-tracking tools, and the better
integrated they are with your existing workflows, the
greater their impact will be.

This e-book takes a look at error monitoring and
reporting from a DevOps standpoint. Read on to
learn how to use smart DevOps solutions to speed up
development, minimize costs, and deliver a better user
experience to your customers.

CO N T E N TS

Introduction

Why is error tracking so important in
game development?

KPIs that make a difference

The importance of automation

Characteristics of an effective solution

Vital studio-wide benefits

Leveraging customer support

Integrated Unity DevOps solutions

© 2021 Unity Technologies — 3

 P O I N T # 1

W H Y I S E R R O R
T R A C K I N G S O
I M P O R T A N T I N
G A M E D E V E L O P M E N T ?

© 2021 Unity Technologies — 4

R E V I E W S C A N M A K E O R B R E A K A G A M E ’ S S U CC E S S .

Game development is extraordinarily competitive, and first impressions count for a lot.
If your game is rife with bugs upon release – especially if it’s a hotly anticipated title –
online conversation will not be kind, and in the worst cases it can leave your studio’s
reputation in tatters. A buggy release can take down a studio of any size.

Error monitoring and reporting has to be an integral part of every stage of development,
but it’s mostly used in the playtest, beta, and release phases of a game. Internal
testing captures only a fraction of errors, and some bugs will get past the most careful
developers and QA teams. That’s where error tracking makes the difference.

When something does go wrong with code, it’s crucial that a reliable, automated tool
immediately alerts developers with a meaningful report that includes the entire context
of an error. This account should include data such as the device, OS, version, quantity of
available memory, and where in the code the error occurred.

It’s easy for a smaller indie to put off implementing a sophisticated error monitoring and
reporting system. When you’re crunching to get a game out the door, it’s hard to think
about improving your DevOps processes.

But sound DevOps processes will ultimately drive your studio’s success. It’s essential
to have a system to know exactly how your code is performing. And effective tracking
doesn’t have to break anyone’s budget.

© 2021 Unity Technologies — 5

 P O I N T # 2

K P I S T H A T
M A K E A
D I F F E R E N C E

© 2021 Unity Technologies — 6

D O N ’ T L E T S U P E R F LU O U S DATA
G E T I N T H E WAY O F Q U I C K AC T I O N .

Trying to sift through too many key performance indicators
(KPIs) can lead to information overload and data that lacks
context. As with any communication, useful error reporting
has to be concise and focused on what’s relevant and
actionable. Superfluous data from tracking too many metrics
just gets in the way.

For game development, the most important KPIs are:

• Number of errors: This leading indicator immediately
points to the health of your development processes. It
lets you isolate faulty workflows or programmers who
may need training or greater supervision.

• Number of users impacted by an error: Prioritize fixes
through careful analysis of this essential metric. An error
may only be affecting a few power users, but if they
happen to be your game’s biggest in-app purchase (IAP)
consumers, your priorities are clear.

• Errors introduced with a release update: Deltas that
occur soon after a patch or update to your game help
focus investigations on a typically limited amount of
newer code.

• Errors per application module: This measurement can
yield a double benefit, offering more focused research
as well as identifying individuals or teams whose
performance is better or less advanced than their peers.

• Errors occurring within five minutes of gameplay:
Glitches that get in the way of new players getting
hooked on your game are going to be much more
costly than errors that occur further down the road.

• Crash- and error-free statistics: Monitoring the
percentage of sessions without crashes allows you
to measure your game’s aggregate session stability,
and you can track this metric over time to see how
stability is evolving. Keeping tabs on how many users
didn’t experience crashes is useful for tracking your
players’ experience.

For your error monitoring processes themselves, the most
important KPI is mean time to detect (MTTD). How long does
it take before you’re aware of bugs that may be eating away
at your success?

© 2021 Unity Technologies — 7

 P O I N T #3

T H E I M P O R T A N C E
O F A U T O M A T I O N

M I N I M I Z E M A N UA L P RO C E S S E S T H AT I N T RO D U C E U N C E RTA I N T Y.

Automation is the backbone of error monitoring and reporting, and it’s key to
virtually all DevOps practices.

Game code errors are cold, hard, objective events. They occur on specific
devices running specific apps on a specific OS under specific conditions.
Collecting and presenting that data in a useful way requires minimizing manual
processes that introduce uncertainty.

For example, do you want a customer support tech collecting and categorizing
bugs at the end of the day, or do you want bugs prioritized automatically the
moment they happen? Do you want someone researching the context of each
error, or do you want as many relevant data points as possible, automatically
collected and immediately available?

Automated error tracking can collect data from development, QA, and production
environments, capturing crashes and exceptions from every client, console,
engine, and server platform that your game or game component runs on. This
approach typically creates structured, searchable error reports that you can
configure for your particular needs, giving you better insights into where to look
for issues in your code.

Importantly, this level of reporting lets you catch issues that users haven’t
noticed yet that are still impacting performance. Adding these kinds of
automated error tracking capabilities is rarely expensive, and even a small studio
can benefit tremendously – especially if your QA team is a part-time intern, or
simply you, working in the kitchen late at night.

© 2021 Unity Technologies — 8

 P O I N T #4

C H A R A C T E R I S T I C S
O F A N E F F E C T I V E
S O L U T I O N

© 2021 Unity Technologies — 9

L E A R N T H E M U ST- H AV E S F O R A N Y E R RO R
M O N I TO R I N G A N D R E P O RT I N G A P P.

As with any DevOps tool, effectiveness is often a
function of ease-of-use. A complex UI may not affect
a developer, but if the developer asks an entry-level
support person to generate a report and then also has
to spend time explaining how to do it, the solution’s
effectiveness drops considerably.

A number of features should be considered as must-
haves for any error monitoring and reporting app.
Crash and exception reporting has to extend across all
of the client devices, engines, languages, streaming
services, and deployment platforms you’re working
with. And of course, it has to be compatible with your
programming languages and tools, with a plug-in for
your development platform. It ought to offer flexible
deployment options such as hosting in a multitenant or
dedicated instance, or deploying on-premises.

In addition, you’ll need to know:

• The exact cause of an error: As much as possible,
reports should include the methods and functions
that generated an error along with a detailed stack.

• Which errors are related: Similar bugs should
automatically be grouped and categorized based
on their similarities, as well as around user-defined
criteria. For example, you’ll probably prioritize
crashing bugs, then assigning different types of
errors to different developers. This capability should
include some degree of deduplication to handle
multiple reports and notifications. At times, too
much data can be as bad as too little.

• How to triage effectively: Can you configure alerts
so that the right people know what’s going on as
soon as possible?

• How to zero in on the error: Are the search and
query capabilities flexible enough that you can find
errors using a wide range of attributes?

C R A S H A N D
E X C E P T I O N R E P O R T I N G
H A S T O E X T E N D
A C R O S S A L L O F T H E
C L I E N T D E V I C E S ,
E N G I N E S , L A N G U A G E S ,
S T R E A M I N G S E R V I C E S ,
A N D D E P L O Y M E N T
P L A T F O R M S Y O U ’ R E
W O R K I N G W I T H .

© 2021 Unity Technologies — 10

 P O I N T # 5

V I T A L S T U D I O - W I D E
B E N E F I T S
N O G A M E C A N S U RV I V E W I T H O U T E F F E C T I V E E R RO R M O N I TO R I N G .

Long ago, after cranking out a batch of code, a programmer would usually have to
go back and comb through their work to find where they misspelled a function or
miscounted delimiters. This was a huge time sink, but soon enough, coding platforms
evolved, and now it’s possible to catch and fix these issues almost immediately.

Game code is infinitely more complex, but the imperative to find and eliminate errors
in early development stages remains strong. Every studio needs to do this in order to:

• Accelerate development cycles
• Minimize patches and emergency fixes
• Spend more time creating new features and product improvements

Often players haven’t progressed to a level where a bug lurks in wait shortly after a
release. The error is there, but it hasn’t been reported yet.

Increases in monthly active users (MAUs) can also lead unexpected bugs to surface,
and it’s difficult to anticipate errors related to high player counts when you’re testing
with a smaller cohort in-house. More players mean more error logs, so you’ll have to
work harder to stay on top of everything.

When automated error tracking meticulously tracks code exceptions, QA and
developers can spot invisible issues and fix them before they adversely impact
the player experience. Whether you’re building games or creating AR filters, user
experience is what drives customer retention, and, in turn, your success.

In game development, eliminating crashes and performance-robbing exceptions is
everything. The competition to retain players with a great user experience is stiff – no
game can survive without effective error monitoring.

Of course, with timely, automatic error monitoring and reporting that groups errors
and shows the detailed context in which they occured, mean time to repair (MTTR)
lessens considerably. Developers spend more time on new content, and overall game
quality – the user experience – surges.

© 2021 Unity Technologies — 11

 P O I N T # 6

L E V E R A G I N G
C U S T O M E R
S U P P O R T

© 2021 Unity Technologies — 12

W H E N Y O U R E R R O R R E P O R T I N G
P I P E L I N E F E E D S D I R E C T L Y I N T O
Y O U R C U S T O M E R S U C C E S S P I P E L I N E ,
B O T H T E A M S B E N E F I T . A N D W H E N
Y O U A D D A U T O M A T I O N S I N T O T H E
M I X , T H E P R O C E S S O N L Y B E C O M E S
M O R E E F F I C I E N T .

I N - G A M E B OTS L I N K E R RO R- M O N I TO R I N G ,
P L AY E RS , A N D D E V E LO P E RS .

Despite the most rigorous QA and testing, errors will persist,
and help from players can be a huge help in finding fast fixes.

When your error reporting pipeline feeds directly into your
customer success pipeline, both teams benefit. And when you
add automations into the mix, the process only becomes more
efficient. Players can be part of the bug-fixing solution without
leaving the game – significantly reducing churn.

One example of a highly efficient automated error reporting
integration is the relationship between Backtrace and Helpshift,
two of Unity’s Verified Solutions Partners. Backtrace automates
crash and error reporting, while Helpshift is an automated
customer support app that’s fully integrated into a game.

Over the past year, Backtrace and Helpshift have been working
on a partnership to provide the next generation of help for
engineers, support teams, and gamers. They’ve built an
integration between their two products that provides customer
support with full visibility when a user reports an error.

If there’s a serious error, a dialog box can pop up and ask the
player to confirm the issue and provide additional context. If
it’s a known bug in the error monitoring system, the dialog can
inform the player and tell them how soon to expect a fix. An
automatic follow-up communicates when things have changed.

https://unity.com/products/backtrace?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=backtrace-bugs-and-automation-ebook
https://unity.com/products/helpshift?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=backtrace-bugs-and-automation-ebook

© 2021 Unity Technologies — 13© 2021 Unity Technologies — 13

Because Helpshift communicates with Backtrace, it can
look directly into the data to better understand the type
of issue a player is having and, if needed, escalate the
matter to the right person. This could be a customer
service agent asking the player to simply reboot their
phone. Or, it could be an engineer seeing a problem with
the build and letting the player know that the developers
are on it.

This close integration also allows teams using both
solutions to see what type of customer is making the
report. If it’s a priority user – like someone who’s making
frequent IAPs – the ticket can automatically be escalated
to the right person, significantly reducing time to
resolution.

To learn more about this integration and how it’s helping
one of the world’s biggest mobile games studios improve
customer retention, you can watch Backtrace and
Helpshift’s three-part webinar series:

© 2021 Unity Technologies — 13

• Crush bugs, catch errors, and keep your player base
engaged with Unity

• Automated game error reporting and player in-app
support done right (part 1)

• Automated game error reporting and player in-app
support done right (part 2)

https://create.unity3d.com/mobile-game-immersion-how-to-keep-players-engaged?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=backtrace-bugs-and-automation-ebook
https://create.unity3d.com/mobile-game-immersion-how-to-keep-players-engaged?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=backtrace-bugs-and-automation-ebook
https://backtrace.io/backtrace-resources/webinars/error-reporting-and-in-app-support-done-right/
https://backtrace.io/backtrace-resources/webinars/error-reporting-and-in-app-support-done-right/
https://backtrace.io/backtrace-resources/webinars/error-reporting-and-in-app-support-done-right-part-2/
https://backtrace.io/backtrace-resources/webinars/error-reporting-and-in-app-support-done-right-part-2/

