
BEST PRACTICES GUIDE

9 ways to optimize your
game development
Unity expert tips to help you ship

The Explorer: 3D Game Kit — Made with Unity

2 | unity.com/solutions/game© 2019 Unity Technologies

Introduction	 4

1. �Planning	 5

Research feature requirements and target platforms	 5
Define memory and performance budgets	 5
Put in place build and QA processes	 6
Consider starting production from scratch	 6

2. �Development and workflow	 7

Automate repetitive manual tasks	 7
Implement version control	 7
Take advantage of the Cache Server	 9
Watch out for plug-ins	 9
Focus on collaboration with Scenes and Prefabs	 9

3. �Profiling	 10

Profile your project often	 10
Unity tools	 11
	 Inspect key project areas with the Unity Profiler	 11
	 Put the Profile Analyzer to work on regression testing	 13
	 Capture and visualize memory consumption	 14
	 Examine rendering and batching flows	 14
Platform/vendor-specific tools	 14

4. �Assets	 15

Set up Import Settings correctly for textures	 16
Reclaim memory by disabling this Mesh option	 17
Select the best compression format for Audio Clips	 18
Use AssetBundles, not Resource folders	 18

https://unity.com/solutions/game

3 | unity.com/solutions/game© 2019 Unity Technologies

5. �Programming and code architecture	 19

Avoid abstract code	 19
Understand the Unity Player Loop	 19
Choose the right frame rate	 20
Avoid synchronous loading	 20
Use pools of pre-allocated objects	 20
Reduce usage of standard behavior methods as much as possible	 21
Be sure to cache expensive API results	 21
Avoid string operations during runtime	 21
Avoid unintended debug logging	 21
Don’t use LINQ queries in critical paths	 22
Use non-allocating APIs	 22
Avoid static data parsing	 22

6. �Physics	 23

7. Animation	 25

8. �GPU performance	 26

Pay attention to overdraw and alpha blending		 27
Keep shaders simple, with few variations	 27
Don’t rely on too many Camera components	 27
Consider static vs dynamic batching	 27
Don’t forget forward rendering and LOD	 27

9. �User interface (UI)	 28

Consider multiple resolutions and aspect ratios	 28
Avoid using a small number of Canvases	 29
Watch out for Layout Groups	 29
List and Grid views can be expensive	 29
Avoid numerous overlaid elements	 29
Think about how you use Mask and RectMask2D components	 29
Atlas your UI textures to improve batching	 29
Be careful when you add a new UI window or screen	 30
Disable Raycast Target when not needed	 30

Next steps	 31

https://unity.com/solutions/game

4 | unity.com/solutions/game© 2019 Unity Technologies

Nearly all games begin life the same way:
with a creative vision and a studio’s hope to
launch the best game possible. It’s a great
undertaking, and one that can be very rewarding.
But there are myriad challenges on the journey
to ship a finished and performant game.
With that in mind, Unity’s Integrated Success
Services (ISS) experts have prepared this guide
– organized around 9 important development
areas – to help you better understand
and avoid common memory, performance,
and platform issues.

Introduction

About Integrated Success Services

Our ISS program partners dedicated developer relations
engineers and other experts with game studios to
optimize their projects and keep them running smoothly.
Whether they’re helping studios increase productivity,
hit tough deadlines, or expand into new territory,
Unity’s ISS experts have substantial experience
and insight to draw on.

Their strategic analysis and optimization
recommendations – crystallized here – will help you
prevent launch-delaying problems before they occur and
ensure your players have the best possible experience
when you launch. We hope these best practices will
guide you on your journey to success.

Please note that the screenshots provided are from different versions
of Unity and may not exactly reflect your own Unity version.

https://unity.com/solutions/game

5 | unity.com/solutions/game© 2019 Unity Technologies

Research feature requirements and target
platforms

Before starting your project or doing any significant
amount of work on it, thoroughly research your feature
requirements and target platforms. Ensure that all of the
intended platforms actually support what you need (e.g.,
instanced rendering is not supported on lower-level
mobile devices). Be sure you consider the limitations as
well as possible workarounds or compromises you’re
prepared to make.

As well, define the minimum specifications for each
target platform and procure multiple hardware units for
both your development and QA teams, as you will need
a good range of target hardware to test with during
development. This will allow you to quickly gauge and
adjust realistic performance and frame budgets, and be
able to monitor them all the way through development.

Define memory and performance budgets

Once you’ve established target specifications
and feature support, define budgets for memory
and performance. This can be tricky, and during
development you may need to refine and adjust them,
but starting out with a reasonable plan is much better
than having no plan and simply throwing anything you
like into your project.

To start, determine your target frame rate and your ideal
CPU performance budget. For mobile platforms, don’t
forget that thermal throttling can kick in and reduce both
CPU and GPU clock speeds, so allow overhead for them
in your planning.

From your CPU budget, try to determine how much time
you want to spend on the various systems required:
rendering, effects, core logic, and so on.

Memory budgets can be quite difficult to determine.
Assets are a major memory consumer, and the main
area over which you (as a developer) have control. For
example, how much memory overall do you want to
commit to assets? Textures, meshes and sounds will
all consume large amounts, and this can spiral out of
control if you’re not careful. Avoid oversized textures,
keeping dimensions appropriate for their visible size
on-screen as well as the target platform(s)’ screen
resolution. Similarly, ensure that meshes have vertex
and polygon counts appropriate for their use case. An
object that only appears far away does not need a highly
detailed mesh.

Finally, think about how much memory you can afford
for systems in your project. For example, you may
implement a particular system that pre-computes a
lot of data to reduce the amount of per-update CPU
computation, but is this reasonable? Is that one
system consuming a disproportionately high amount
of memory? Perhaps it is the most important system in
terms of performance, and so the trade-off is worth it.
These are issues you need to try to plan for.

1. Planning

https://unity.com/solutions/game

6 | unity.com/solutions/game© 2019 Unity Technologies

Put in place build
and QA processes

It is very important to put in place a build and QA
process. Building and testing locally is useful up to a
point, but is time-consuming and error-prone. There are
numerous possible solutions to consider (e.g., Jenkins
is very popular). You may choose to configure your
own build machine(s) dedicated for the purpose, or use
one of the many cloud-based services to reduce the
overhead and cost of maintaining your own machines.
You may also consider the Cloud Build feature of Unity
Teams. Take some time to evaluate and choose a
solution that you feel fits your needs.

It’s a good idea to plan for how features will be published
to your release builds. Hand-in-hand with Version
Control, consider how you want your development
branches to be built and verified. Automated tests
that run as part of the build process can catch many
problems, but not everything. If you do run automated
tests, it is worth collecting metrics so that you have a
history of test performance across builds. This will help
you spot regressions more quickly. You may also need to
include some manual quality assurance and approval in
your process. The build process can merge branches to
your release build once they are verified.

Create automated builds of your project using Unity Cloud Build

Consider starting production
from scratch

After prototyping your project, seriously consider
starting your production phase from scratch. Decisions
made during prototyping usually favor speed, and so
it’s highly likely your prototype project consists of many
“hacks” and is not a solid foundation to start from.

1. Planning

https://unity.com/solutions/game
https://jenkins.io/
https://docs.unity3d.com/Manual/UnityCloudBuild.html
https://unity3d.com/teams
https://unity3d.com/teams
https://docs.google.com/document/d/1w_80nyRF75gqn7RSIHl4UpDBHM_C5N-H3OjJPodPNXI/edit?ts=5dc08f47#heading=h.e8i79dng7l0g
https://docs.google.com/document/d/1w_80nyRF75gqn7RSIHl4UpDBHM_C5N-H3OjJPodPNXI/edit?ts=5dc08f47#heading=h.e8i79dng7l0g

7 | unity.com/solutions/game© 2019 Unity Technologies

Most developers want to spend their time being creative and productive, and not
constantly battling problems with workflows. However, poor choices can lead to
inefficiencies and mistakes by the team during development, affecting the quality
of the final product. To mitigate this, find ways to streamline common tasks and make
them more robust, which will minimize breakages that could block your team.

Automate repetitive
manual tasks

Manual tasks that are repeated often are a prime
candidate for automation (e.g., via custom scripts
or Editor tools). A relatively small amount of time and
effort can translate into a large amount of cumulatively
saved time across the team during the life of the
project. Automating tasks also removes the risk
of user error.

In particular, ensure that your build process is fully
automated and can be built entirely via a single action,
either locally or on a Continuous Integration server.

2. Development and workflow

Implement
version control

All developers should be using version control of some
kind, and Unity has built-in support for multiple solutions.

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/Versioncontrolintegration.html

8 | unity.com/solutions/game© 2019 Unity Technologies

2. Development and workflow

Version Control settings within the Unity Editor

To start, ensure that your project’s Editor Settings have
Asset Serialization Mode set to Force Text, which should
be the default.

Unity also has a built-in YAML (a human-readable, data-
serialization language) tool specifically for merging
scenes and Prefabs. Ensure that this is also set up. For
more information, see SmartMerge here.

If your version-control solution supports commit hooks
(e.g., Git) you can make use of its commit hooks to
enforce certain standards. See this Unity Git Hooks
page for more information.

You should keep all active development work off
your main branch(es) so that you always have a solid
working version of your project. Use branches and tags
to manage milestones and releases.

Enforce a policy of good commit messages within the
team. Clear, descriptive messages will help you track
down problems later during development, while empty
or meaningless messages just add noise.

Finally, good version control can help you quickly hunt
down where a problem got introduced. Git, for example,
has a bisect feature that allows you to mark a known
good revision and a known bad revision, then you can
use a “divide and conquer” approach to check out
revisions in between to test and flag as good or bad.
Spend some time learning which features your version-
control system has and identify those that may be of
use during development.

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/SmartMerge.html
https://github.com/doitian/unity-git-hooks

9 | unity.com/solutions/game© 2019 Unity Technologies

Take advantage
of the Cache Server

Switching between target platforms within the Unity
Editor, particularly on large projects, can be very slow, so
we recommend you use the Unity Cache Server to help
with this. You can run multiple cache servers, optionally
using different ports, if you need to support multiple
projects or versions of Unity.

The Cache Server also makes switching platforms much
faster for local users, so be sure to take advantage of it.

Watch out
for plug-ins

If your project contains a lot of plug-ins and third-party
libraries, there’s a good chance that unused assets
within them are being built into your game because
many plug-ins come with embedded test assets
and scripts.

If you’re using Asset Store assets, check which
dependencies they pull into your project. For example,
you may be surprised to find that you have several
different JSON libraries.

Finally, strip out any resources from plug-ins that you
don’t need, including old assets and scripts that may
remain from your prototyping phase.

2. Development and workflow

Focus on collaboration
with Scenes and Prefabs

It’s important to think about how you want your
development team to work together on content. Large,
single Unity Scenes do not lend themselves well to
collaboration. We recommend that you break your levels
down into many smaller scenes so that artists and
designers can collaborate better on a single level while
minimizing the risk of conflicts. At runtime, your project
can load scenes additively using the SceneManager.
LoadSceneAsync() API passing the parameter mode
= LoadSceneMode.Additive.

Unity 2018.3 and later include Improved Prefabs, which
support the nesting of Prefabs. This also lets you break
down Prefab content into smaller discrete items that
can be worked on independently by different team
members without risk of conflicts. Even so, there will
be times when team members will need to access
and work on the same asset. Agree on how you will
handle this within the team. This may simply require
a communication policy whereby team members
alert each other via a Slack channel, email, etc. If your
workflow supports it, you could also handle this through
a file check-in/check-out mechanism in your version-
control solution.

https://unity.com/solutions/game
https://blogs.unity3d.com/2018/03/20/cache-server-6-0-release-and-retrospective-optimizing-import
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.LoadSceneAsync.html
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.LoadSceneAsync.html
https://docs.unity3d.com/ScriptReference/SceneManagement.LoadSceneMode.html
https://blogs.unity3d.com/2018/06/20/introducing-new-prefab-workflows/

10 | unity.com/solutions/game© 2019 Unity Technologies

Profile your project often

Don’t let issues build up in your project – try to profile
often, not just late in your schedule or when your project
starts exhibiting performance problems. Having a good
feel for the typical “performance signature” of your
project can help you spot new performance issues more
easily. If you see a new glitch or spike, investigate it as
soon as possible.

Here are some important profiling tips:

• �Do not try to optimize your project based on
assumptions – always optimize based on what you
find during profiling.

• �Use both Unity and platform/vendor-specific profiling
tools to get the clearest picture of what is happening
across your project.

• �While profiling your project within the Unity Editor
can be useful, always profile on the target
platforms themselves.

• �Consider automated testing to catch regressions
for further investigation. As well, consider saving
profiling captures for manual comparison via tools
like Profile Analyzer.

3. Profiling

https://unity.com/solutions/game

11 | unity.com/solutions/game© 2019 Unity Technologies

Unity tools

Unity’s own profiling tools typically require a Development
build of your project, so while performance is not the
same as a final non-Development build, it should still give
a fairly good overview as long as you have selected a
Release rather than a Debug build configuration.

Inspect key project areas
with the Unity Profiler

Use the Unity Profiler often to inspect key areas
of your project.

Add meaningful Unity Profiler samplers to your scripts
to give you more meaningful information without
having to resort to Deep Profiling, which greatly impacts
performance and only works in the Unity Editor as well
as those platforms supporting Just-In-Time (JIT) Mono
compilation (i.e., Windows, macOS, and Android).

Don’t forget that in addition to being able to reorder
the individual Profiler tool tracks (such as CPU, GPU,
Physics, etc.), you can add and remove them as well.
With Unity 2018.3 and later, removing those tracks,
which are not currently needed, reduces CPU overhead
in the runtime on the target platform. In previous Unity
versions, all profiling data was collected by the runtime
regardless, increasing Profiler overhead.

Within Profiler’s Hierarchy view, sort by the Total column
to identify the most expensive areas in terms of CPU cost.
This will help you zero-in on areas that need investigation.

3. Profiling

Profiling the most expensive code functions with Unity Profiler Hierarchy view

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/Profiler.html

12 | unity.com/solutions/game© 2019 Unity Technologies

Profiling across threads with Unity Profiler Timeline view

3. Profiling

Similarly, sort by the GC Alloc column to reveal areas
that are generating managed allocations. Aim to reduce
allocations as much as possible, especially those
that occur regularly or even every frame, and focus on
allocation spikes that may cause the managed heap
to grow quickly and trigger garbage collections. Keep
the managed heap size (reported as Mono under the
Memory Profiler track) as low as possible because
the more memory you use, the more fragmented it will
become, leading to expensive garbage collections.

Unlike Hierarchy view, which focuses on just the
Unity Main thread, Profiler’s Timeline view gives you
a valuable visual overview across multiple threads,
including Unity Main and Rendering threads, Job
System threads, and user threads (if appropriate Profiler
samplers have been added).

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html

13 | unity.com/solutions/game© 2019 Unity Technologies

Put the Profile Analyzer to work on
regression testing

The Profile Analyzer lets you import data from Unity
Profiler – either what is currently captured or from a
capture file previously saved to disk – and allows you to
perform various analyses. In addition to seeing profiling
markers broken down by mean, median, and peak costs,
you can also compare sets of data. This is useful, for
example, for regression testing where you compare data
captured before and after changes.

Comparing before-and-after Profiler data to check for improvements or regressions

3. Profiling

https://unity.com/solutions/game
https://blogs.unity3d.com/2019/05/13/introducing-the-profile-analyzer/

14 | unity.com/solutions/game© 2019 Unity Technologies

Platform Tool(s)

iOS and macOS Xcode and Instruments

Android Android Studio

Windows VTune

Windows, Xbox One PIX

Windows NVidia NSight

PlayStation 4 Razor

Capture and visualize memory consumption

The Memory Profiler (available in the Package Manager
via Preview packages) is a powerful tool for capturing
and visualizing some (but not all) memory used by
the application. Its Tree Map view is especially useful
for immediately visualizing memory consumption of
common asset types such as Textures and Meshes,
as well as other managed types such as strings and
project-specific types.

Check these areas of asset consumption for potential
problems. For example, Textures that seem unusually
large may indicate incorrect import settings or overly
high resolutions. Duplicate assets may also be found
here. It is possible for different assets to have the same
name; however, multiple assets of the same name
and the same size may be duplicates and should be
investigated. Incorrect AssetBundle assignments is one
cause of this.

Typically, but not always, projects tend to have a larger
ratio of Texture memory to Mesh memory. For that
reason, investigate if you see higher Mesh memory
usage compared to Texture memory usage.

Examine rendering and batching flows

The Frame Debugger tool can be very useful for
examining the flow of rendering and areas such as
batching. This tool will tell you why a batch is broken, for
example, which may allow you to optimize your content.

When you see how your frame is built it may reveal
other problems, such as multiple renders of the same
content (e.g., duplicate cameras have been observed
in real-world projects) and rendering of content that is
completely obscured (e.g., continuing to render a 3D
scene behind a full-screen 2D UI).

3. Profiling

Platform/vendor-specific tools

While Unity’s profiling tools provide a lot of functionality,
it is also worth investing time to learn to effectively use
the native profiling tools for your target platform(s).
For example:

These toolsets offer more powerful profiling options,
such as sampling- and instrumentation-based CPU
profiling, full native memory profiling, and GPU profiling,
including shader debugging. You would typically use
these tools on a non-Development build of your project.

You can measure performance across all CPU
cores, threads, and functions, not just those with
Unity Profiler markers.

Memory profiling (e.g., via Instruments’ Allocations and
VM Tracker tools on iOS) can reveal large consumers
of memory that don’t appear in Unity’s Memory Profiler,
such as native allocations made by third-party plugins.

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/FrameDebugger.html

15 | unity.com/solutions/game© 2019 Unity Technologies

The asset pipeline is hugely important. Much of your project’s memory footprint will be
taken by assets such as textures, meshes, and sounds, and suboptimal settings can cost
you dearly.

To avoid this, it’s essential to set up a good flow of art content made to the right
specifications. If possible, involve an experienced technical artist from the very beginning
to help define this process.

To start, define clear guidelines on which formats and specifications you will use.

It is very important to have correct Import Settings across all assets in your project.
Make sure that your team understands the settings for the asset types they’re working on,
and enforce rules to ensure that all your assets have consistent settings.

As well, don’t simply use the Default settings for all platforms. Use the platform-specific
override tabs to optimize assets (e.g., to set different maximum texture sizes
or audio quality).

Consider setting up an automated way to apply Import Settings for new assets using
the AssetPostprocessor API, as shown in this project.

See also: Art Asset best practice guide

Unity can import many types of asset files

4. Assets

https://unity.com/solutions/game
https://docs.unity3d.com/ScriptReference/AssetPostprocessor.html
https://github.com/MarkUnity/AssetAuditor
https://docs.unity3d.com/Manual/HOWTO-ArtAssetBestPracticeGuide.html

16 | unity.com/solutions/game© 2019 Unity Technologies

Setting up Import Settings for a Texture asset

4. Assets

Set up texture imports correctly

Textures usually consume the most memory of all asset
types, so ensure your Import Settings are correctly set up.

The Read/Write Enabled option should never be enabled
unless you absolutely need to access the pixel data
from scripts. This option keeps a copy of the pixel
data in CPU-addressable memory as well as the copy
uploaded to GPU-addressable memory, thus doubling
the overall memory footprint. Fortunately, at runtime
you can force a Texture asset to discard the CPU-
addressable copy via the Texture2D.Apply() API, passing
the parameter makeNoLongerReadable=false;

Only enable mipmaps if required. Typically this is the
case for textures used in a 3D scene, but is usually not
required for 2D. Leaving this option enabled when not
required will increase the memory footprint of a texture
by around one third.

Use compression when possible, although not
all content retains sufficient visual fidelity when
compressed, which is especially true of UI textures.
Understand the pros and cons of the compression
formats applicable to your target platforms and choose
your formats wisely. For example, using ASTC rather
than PVRT on iOS typically yields higher-fidelity results,
but the format is not supported on lower-end devices
that do not have the Apple A8 chip or later. Some
developers choose to include multiple compressed
versions of their assets, allowing them to use the
highest-quality version supported by a particular device.

Use sprite atlases as much as possible in order to
group sprites together, which improves batching and
reduces the number of draw calls. To do this, use Unity
SpritePacker or Unity SpriteAtlas, depending on which
version of Unity you are using, or one of many third-party
tools such as Texture Packer.

https://unity.com/solutions/game
https://docs.unity3d.com/ScriptReference/Texture2D.Apply.html
https://docs.unity3d.com/Manual/SpritePacker.html
https://docs.unity3d.com/Manual/SpritePacker.html
https://docs.unity3d.com/Manual/class-SpriteAtlas.html
https://www.codeandweb.com/texturepacker

17 | unity.com/solutions/game© 2019 Unity Technologies

Reclaim memory by disabling this Mesh option

Again, only enable the Read/Write Enabled option if you
need to read mesh data from scripts. This option was
enabled by default in all versions of Unity until Unity
2019.3 (where it is off by default), and is commonly
left as-is. You can reclaim memory in many projects by
disabling this option.

If your project uses different model source files (e.g.,
FBX) to import visible meshes and animations, ensure
that the meshes are stripped out of those source files.
Otherwise, the mesh data will still be built into the final
output, wasting memory.

Setting up Import Settings for a Model asset

4. Assets

https://unity.com/solutions/game

18 | unity.com/solutions/game© 2019 Unity Technologies

Select the best compression format for
Audio Clips

For most Audio Clips, a Load Type setting of
Compressed In Memory is a good default. Make sure
that you select the appropriate compression format for
each platform. Consoles have their own custom formats,
and Vorbis is a good choice for everything else. On
mobile, Unity does not use hardware decompression,
therefore there is no advantage to selecting MP3 for iOS.

Choose suitable sample rates for the target platform. For
example, short sound effects on mobile devices should
be 22050 Hz at most, and many can be much lower than
this with a negligible effect on the final quality.

Ensure that long music or ambient sounds have their
Load Type set to Streaming, otherwise the entire asset
will be loaded into memory at once.

Setting Load Type to Decompress On Load will incur
CPU cost and memory by decompressing a sound into
raw 16-bit PCM audio data. This is usually only desirable
for short sounds like footsteps or sword clashes, which
often have multiple concurrent instances.

Use original (pristine) uncompressed WAV files as
your source assets where possible. If you use any
compressed format (such as MP3 or Vorbis),
then Unity will decompress it and recompress
it during build time, resulting in two lossy passes,
which degrades the final quality.

If you plan to place sounds within 3D space in your
project, you should either author them as mono (single
channel) or enable the Force To Mono setting. That’s
because a multi-channel sound used positionally at
runtime will be flattened to a mono source in real-time,
thus increasing CPU cost and wasting memory.

4. Assets

Use AssetBundles, not Resource folders

Use AssetBundles rather than placing assets inside
Resource folders. Assets inside Resource folders get
built into a sort of internal AssetBundle, and the header
information for this is loaded during startup. As a result,
having a lot of assets stored this way can lengthen
startup time.

To avoid duplicating assets, explicitly assign all
assets to AssetBundles, especially those that have
dependencies. For example, imagine two material
assets that use the same texture. If the texture is not
assigned to an AssetBundle and the two materials are
assigned to separate AssetBundles, then the texture
will be duplicated into each of those AssetBundles
alongside the referencing material. Assigning the
texture explicitly to an AssetBundle prevents this.

You can use the AssetBundles Browser tool to
set up and track assets and dependencies across
AssetBundles, and the AssetBundle Analyzer tool
to highlight duplicate assets as well as those with
potentially suboptimal settings.

Plan your strategy for building content into
AssetBundles, as there is no real one-size-fits-all
solution. Many people group AssetBundles by logical
content; for example, in a racing game, you could put
all assets required for each car type into its own unique
AssetBundle.

However, for platforms that support patching, take
care with this strategy. Due to the compression
algorithm used, a relatively small change to one or
more assets can result in much of the binary data of an
AssetBundle changing, which means that an efficient
patch delta cannot be generated. Therefore, this can
be a huge problem if you’re using a small number of
large AssetBundles. For patching, use many smaller
AssetBundles rather than just a few larger ones.

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/AssetBundlesIntro.html
https://docs.unity3d.com/Manual/AssetBundles-Browser.html
https://github.com/faelenor/asset-bundle-analyzer

19 | unity.com/solutions/game© 2019 Unity Technologies

By following these best practices and making smart architectural decisions, you will
ensure higher team productivity and better user experiences once your game launches

See also: How to have a better scripting experience

Avoid abstract code

Overly engineered and abstract code can be very hard
to follow, especially for new hires on your team, and it
generally makes it hard to analyze and discuss changes.
This type of code will also generate more code, lead to
longer build times (including IL2CPP builds, which will
have more IL to transpile), and the final code may be
less performant.

Understand the Unity Player Loop

Ensure that you have a good enough understanding of
the Unity frame (or player) loop. For example, it is very
important to know when Awake, OnEnable, Update and
other methods are called. You can find more information
in Unity’s documentation.

The default Fixed Timestep setting is often a cause of extra CPU processing

5. Programming and code architecture

The difference between Update and FixedUpdate
is especially important. FixedUpdate methods are
controlled by the project’s Fixed Timestep value,
which by default is 0.02 (50 Hz). This means that Unity
will ensure that FixedUpdate methods are called 50
times per second, which may mean multiple calls in
a single frame. If your frame rate drops, this problem
worsens since the number of FixedUpdate calls will
increase. This can result in a cycle known colloquially
as the “spiral of death,” because it sometimes exhibits
severe glitches.

Physics system updates are part of the FixedUpdate
phase, so games with a lot of physics content can
suffer quite badly here. Some projects also run various
game systems via FixedUpdate, so be careful to check
for, and avoid, these kinds of performance issues. For
these reasons, we highly recommend you set your Fixed
Timestep value to closely match your target frame rate.

https://unity.com/solutions/game
https://unity3d.com/how-to/better-scripting-experience
https://docs.unity3d.com/Manual/ExecutionOrder.html

20 | unity.com/solutions/game© 2019 Unity Technologies

Choose the right frame rate

Choose an appropriate target frame rate. Mobile
projects, for example, commonly need to balance fluid
frame rates against battery life and thermal throttling.
Running a game at 60 FPS with most of the frame time
occupied with CPU and/or GPU load will lead to shorter
battery life and faster throttling of CPU and GPU clock
speeds by the device itself. For many projects, aiming
for 30 FPS is a perfect compromise. Consider also
dynamically adjusting frame rate during runtime via the
Application.targetFrameRate property.

The new On-Demand Rendering feature, available as
of the Unity 2019.3 beta, allows you to reduce the
frequency of rendering without affecting other systems
such as the Input system.

Often, the frame rate is not taken into account in
scripting logic or animation. Don’t assume a constant
value for your updates, but instead use Time.deltaTime
in Update methods and Time.fixedDeltaTime in
FixedUpdate methods.

Avoid synchronous loading

Performance spikes are common when loading
scenes or assets, often because the loads are
performed synchronously on the Unity Main thread.
For that reason, design your title to be robust using
asynchronous loading to minimize these spikes. Use the
AssetBundle.LoadFromFileAsync() and AssetBundle.
LoadAssetAsync() APIs instead of AssetBundle.
LoadFromFile() and AssetBundle.LoadAsset().

Setting up your project to be asynchronous will also
help in other ways. Fluid user interaction will always be
maintained. Server authentications and exchanges can
easily happen in parallel with scene and asset loading,
helping to reduce overall startup and loading times. A
fully asynchronous design also means it will be easier
for you to migrate to the new Addressable Asset System
in the future.

5. Programming and code architecture

Use pools of pre-allocated objects

Where objects are frequently instantiated and destroyed
(bullets or NPCs are good examples), use pools of pre-
allocated objects where the objects are recycled and
reused instead. While there may be some CPU cost in
resetting specific components on these objects for each
reuse, it will be cheaper than complete instantiation. This
approach also greatly reduces the number of managed
allocations in your project.

https://unity.com/solutions/game
https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html
https://docs.unity3d.com/2019.3/Documentation/ScriptReference/Rendering.OnDemandRendering.html
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html
https://docs.unity3d.com/ScriptReference/Time-fixedDeltaTime.html
https://docs.unity3d.com/ScriptReference/AssetBundle.LoadFromFileAsync.html
https://docs.unity3d.com/ScriptReference/AssetBundle.LoadAssetAsync.html
https://docs.unity3d.com/ScriptReference/AssetBundle.LoadAssetAsync.html
https://docs.unity3d.com/ScriptReference/AssetBundle.LoadFromFile.html
https://docs.unity3d.com/ScriptReference/AssetBundle.LoadFromFile.html
https://docs.unity3d.com/ScriptReference/AssetBundle.LoadAsset.html
https://blogs.unity3d.com/2019/07/15/addressable-asset-system/

21 | unity.com/solutions/game© 2019 Unity Technologies

Reduce usage of standard behavior methods as much
as possible

All custom behaviors inherit from an abstract class,
which defines methods for Update(), Awake(), Start(), and
others. If a particular behavior does not require one of
these methods (a comprehensive list can be found in the
Unity documentation), then remove it rather than leave it
empty, otherwise the empty method(s) will still be called
by Unity. These methods incur a small amount of CPU
overhead due to the cost of calling managed code (C#)
from native code (C++).

This can be particularly problematic for Update()
methods. If you have a lot of objects with Update()
methods, this CPU cost can rise and become non-trivial.
Consider the “manager pattern,” where one or more
manager classes implement an Update() method but are
then responsible for updating all of the individual objects.
This greatly reduces the number of transitions between
native and managed code. See this blog post for details.

As well, decide whether different systems in your project
need to be updated each frame. Systems can often run at
lower frequencies and so can be called in turn – a simple
example would be two systems that are updated on
alternate frames.

We also recommend time-slicing, where a system handles
many items but spreads the load out over several frames,
processing only a certain number of items per frame. This
also helps to keep peak CPU load down.

A more advanced form of this is where you implement
a comprehensive “budgeted update manager,” where
each of the project’s systems is assigned a maximum
per-frame time budget, then each system implements a
manager based on a standard interface that performs as
much work as it can within its allotted time. This approach
can really help manage peak CPU load over the project’s
lifetime. Systems designed to follow this pattern can be
more flexible.

5. Programming and code architecture

Be sure to cache expensive API results

Cache data as much as possible. Commonly seen
API calls such as GameObject.Find(), GameObject.
GetComponent(), and accessing Camera.main can be
expensive, so avoid calling them in Update() methods.
Instead, call them in Start() and cache the results.

https://unity.com/solutions/game
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://blogs.unity3d.com/2015/12/23/1k-update-calls

22 | unity.com/solutions/game© 2019 Unity Technologies

5. Programming and code architecture

Avoid string operations during runtime

Avoid lots of string operations such as concatenation
during runtime. These can generate a lot of managed
allocations, leading to garbage-collection spikes. Only
regenerate strings (e.g., player scores) when they
actually change, rather than on every update. Also,
you can use the StringBuilder class to help reduce the
number of allocations considerably.

Avoid unintended debug logging

Unintended debug logging can often cause spikes in a
project. APIs like Debug.Log() will continue to log even
in non-Development builds, which is often a surprise
to developers. To prevent this, consider wrapping
calls to APIs like Debug.Log() in your own class, using
the Conditional attribute on the methods like this:
[Conditional(“ENABLE_LOGS”)]. If the define used for the
Conditional attribute is not present, the method and all
call sites will be stripped out.

Don’t use LINQ queries in critical paths

While LINQ queries can be very attractive for their power
and ease-of-use, avoid using them in critical paths (i.e.,
regular updates), as they can generate a lot of managed
allocations and be expensive in terms of CPU cost.
If you must use them, be sensible and limit them to
occasional situations such as level initialization,
as long as they don’t contribute to unnecessarily large
CPU spikes.

Use non-allocating APIs

Unity has some APIs that generate managed
allocations, such as Component.GetComponents(). APIs
that return an array like this are allocating internally.
Sometimes there are non-allocating alternatives, which
should always be used instead. Many of the Physics
APIs have newer non-allocating alternatives; for
example, use Physics.RaycastNonAlloc() rather than
Physics.RaycastAll().

Avoid static data parsing

Projects often process data stored in readable formats
such as JSON or XML. While this is frequently in
response to data downloaded from a server, it is also
common to do so with embedded static data. This kind
of parsing can be slow and typically generates a lot of
managed allocations. Instead, for static data built into
the title, use ScriptableObjects with custom Editor tools.

See also: 3 cool ways to architect your game with
Scriptable Objects

https://unity.com/solutions/game
https://docs.unity3d.com/ScriptReference/Debug.Log.html
https://docs.unity3d.com/ScriptReference/Component.GetComponents.html
https://docs.unity3d.com/ScriptReference/Physics.RaycastNonAlloc.html
https://docs.unity3d.com/ScriptReference/Physics.RaycastAll.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://unity3d.com/how-to/architect-with-scriptable-objects
https://unity3d.com/how-to/architect-with-scriptable-objects

23 | unity.com/solutions/game© 2019 Unity Technologies

Due primarily to potential multiple executions per frame during FixedUpdate, Physics
is often seen to be overly expensive in titles. However, there are other issues that you
should also be aware of that may impact performance.

Enable the Prebake Collision Meshes option in Player Settings, where possible, to
generate the runtime physics mesh data at build time. Otherwise, this data is generated
at runtime when an asset is loaded, and content with many physics meshes can incur a
high CPU cost on Unity’s Main thread during generation.

Mesh colliders can be expensive, so substitute more complex mesh colliders with one
or more simpler primitive types, as required, to approximate the original shape.

6. Physics

https://unity.com/solutions/game

24 | unity.com/solutions/game© 2019 Unity Technologies

6. Physics

Configuring the Physics settings within the Unity Editor

Settings

Consider disabling the Auto Sync Transforms option,
which was enabled by default after its introduction in
Unity 2017, in order to preserve backward compatibility.
It ensures that any modification of any transform will
be automatically and immediately synchronized to its
underlying Physics object. However, in many cases
it is not essential that this be done until the point at
which the Physics simulation is stepped, yet may take
noticeable CPU time during a frame. Disabling the
option will defer synchronization to a later point but may
well save CPU time overall.

If you are using collision callbacks, enable the Reuse
Collision Callbacks option. This will avoid managed
allocations on each callback by reusing a single internal
Collision object during callbacks, rather than creating
a new one for each callback. As well, when using
callbacks, be mindful of doing complex work during
them, as this can really add up in heavy scenes with a
lot of collision events. Adding Unity Profiler markers to
your callbacks will make them visible and easier to track
down should they become a performance problem.

Finally, ensure that your Layer Collision Matrix is optimized
by checking only the desired combinations of layers.

https://unity.com/solutions/game

25 | unity.com/solutions/game© 2019 Unity Technologies

Animation is often a surprisingly expensive feature in projects as developers tend
to use Animators excessively.

Animators are primarily intended for humanoid characters, but are often used to
animate single values (e.g., the alpha channel of a UI element). Although Animators
are convenient to use for their state machine flow, this is a relatively inefficient use
case. Internal benchmarks show that on a device such as a low-end iPhone 4S, the
performance of Animators beats that of Legacy Animation only when around 400 curves
are being animated.

For simpler use cases (such as pulsing an alpha value or size), consider more
lightweight implementations such as writing your own utility scripts or use a third-party
library like DOTween.

Finally, be careful if you are manually updating Animators because they normally use
Unity’s Job System to process in parallel but manual updates force them to process on
the Main thread.

7. Animation

https://unity.com/solutions/game

26 | unity.com/solutions/game© 2019 Unity Technologies

We recommend doing GPU profiling to reveal how much of your GPU performance is
spent on vertex, fragment, and compute shaders. This will let you investigate the most
expensive draw calls and identify the most expensive shaders, potentially providing
significant optimization gains.

See also:
Optimizing graphics performance
Modeling characters for optimized performance
Shader profiling and optimization tips

Shader debugging and profiling on iOS using Xcode’s GPU Capture tool

8. GPU performance

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html?_ga=2.146098100.1408744479.1568906281-851668872.1533394332
https://docs.unity3d.com/Manual/ModelingOptimizedCharacters.html?_ga=2.146098100.1408744479.1568906281-851668872.1533394332
https://unity3d.com/how-to/shader-profiling-and-optimization-tips

27 | unity.com/solutions/game© 2019 Unity Technologies

Pay attention to overdraw and alpha blending

Mobile platforms in particular are greatly impacted by
alpha blending and overdraw. It is not uncommon to
find a significant amount of GPU rendering time taken
by large, barely visible overlays or effects with several
layers of alpha-blended sprites containing a lot of zero-
alpha pixels.

As well, avoid drawing unnecessary transparent
images and, for cases where an image has large, fully
transparent areas (e.g., a full-screen vignette overlay),
consider making a custom mesh to avoid rendering
those zero-alpha areas.

Keep shaders simple, with few variations

On mobile, try to keep shaders as simple as possible.
Rather than using the Standard shader, use custom
shaders, which you can make as lightweight as
possible. Use simplified versions or even disable effects
for lower-end target devices.

Try to keep the number of shader variations as low as
possible, as this can impact performance and also have
a dramatic effect on runtime memory usage.

Don’t rely on too many Camera components

Avoid relying on more Unity Camera components than
you really need to achieve your rendering. For example,
it is not uncommon to find projects that use several
cameras to build up UI layers. Each Camera component
incurs overhead whether it does any meaningful work
or not. On more powerful target platforms this might be
negligible, but on lower-end or mobile platforms this can
be up to 1 ms of CPU time each.

8. GPU performance

Consider static vs dynamic batching

Enable Static Batching on environment meshes that
share the same materials. This allows Unity to merge
them in such a way as to greatly reduce draw calls and
rendering state changes, while still benefiting from
object culling.

Profile to find if Dynamic Batching is a win for your
project, which is not always the case. Objects must be
“similar” and within fairly strict and relatively simple
criteria in order to be dynamically batched. Unity’s
Frame Debugger will help you see why certain objects
were not batched.

Don’t forget forward rendering and LOD

Avoid too many dynamic lights when you use forward
rendering. Every dynamic light adds a new render pass
for every illuminated object.

Also, use Level of Detail (LOD) where possible. As
objects move into the distance, use simpler meshes
with simpler materials and shaders to significantly help
GPU performance.

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/RenderTech-ForwardRendering.html
https://docs.unity3d.com/Manual/RenderTech-ForwardRendering.html
https://docs.unity3d.com/Manual/LevelOfDetail.html

28 | unity.com/solutions/game© 2019 Unity Technologies

Unity UI (also known as UGUI) is often a source of performance issues in projects.
See Unity UI Optimization Tips for details.

9. User interface (UI)

Consider multiple resolutions and aspect ratios

Unity UI makes it easy to build UIs that can adjust
positions and scale to account for different screen
resolutions and aspect ratios. However, sometimes
a single layout/design does not work well across all
devices, so it might be better to create different versions
of a UI (or parts of it) to provide the best experience on
different devices.

Configuring a Unity UI Canvas

Always extensively test your UI across a wide range of
supported devices to ensure that the user experience is
good and consistent across them all.

https://unity.com/solutions/game
https://unity3d.com/how-to/unity-ui-optimization-tips

29 | unity.com/solutions/game© 2019 Unity Technologies

9. User Interface (UI)

Avoid using a small number of Canvases

Do not place all UI content on a single or on a small
number of “monolithic” Canvases. Each Canvas
maintains a mesh for all of its content, and when any
single element changes, this mesh gets rebuilt.

Separate content into separate Canvases, preferably
by their update frequency. Keeping dynamic elements
separate from static ones will avoid the CPU costs of
constantly rebuilding static mesh data.

Watch out for Layout Groups

Layout Groups are another common source of
performance issues, especially when nested. When a
UI Graphic component inside a Layout Group changes
– for example, when a ScrollRect is moving – UGUI
will search for parent Layout Groups recursively up the
scene hierarchy until it reaches a parent without one.
The layout of everything underneath will subsequently
be rebuilt.

Try to avoid Layout Groups where possible, especially
if your content isn’t really dynamic. In cases where
Layout Groups are only used to perform the initial layout
of content, which subsequently doesn’t change, then
consider adding some custom code to disable those
Layout Group component(s) after the content has
been initialized.

List and Grid views can be expensive

List and Grid views are another common UI pattern (e.g.,
inventory or shop screens). In such cases, where there
may be hundreds of items with only a small number
visible at once, don’t create UI elements for them all, as
it will be very expensive. Instead, implement a pattern
to reuse elements and bring them into view on one side
as they move off the other side. A Unity engineer has
provided an example in this GitHub project.

Avoid numerous overlaid elements

It is common to see UIs with areas constructed of many
overlaid elements. A good example of this might be a
card Prefab in a card-battler game. While this approach
allows for a lot of customization in designs, it can
greatly impact performance with lots of pixel overdraw.
Furthermore, it may result in more draw batches.
Determine if you can merge many layered elements into
fewer (or even one) elements.

Think about how you use Mask and RectMask2D
components

Mask and RectMask2D components are commonly
found in UI. Mask utilizes the render target’s stencil
buffer to draw or reject the pixels being drawn, bearing
the cost almost entirely on the GPU. In contrast,
RectMask2D performs bounds-checking on the CPU
to reject elements outside of the mask. Complex UIs
with lots of RectMask2D components, especially when
nested, can incur significant CPU costs in performing
the bounds checks. Take care not to use excessive
numbers of RectMask2D components, or if GPU load is
less than CPU load, consider whether it is preferable to
switch to Mask components to balance the overall load.

https://unity.com/solutions/game
https://docs.unity3d.com/Manual/class-Canvas.html
https://github.com/boonyifei/ScrollList

30 | unity.com/solutions/game© 2019 Unity Technologies

9. User Interface (UI)

Disable Raycast Target on elements that do not need input events

Atlas your UI textures to improve batching

Ensure that UI textures are atlased as much as possible
in order to improve batching. While it can make sense
to use many atlases for logical groups of textures,
take care that the atlases are not over-sized and/
or sparsely populated. This is a common source of
memory wastage.

Also, ensure that atlases are compressed where
possible. While it is often undesirable to compress
UI textures, due to the appearance of artefacts, this
depends on the nature of the content itself.

In most cases, mipmaps are not required on UI textures,
so ensure that this Import Setting is disabled on them
unless you specifically require it (for world-space UI,
for instance).

Be careful when you add a new UI window or screen

Glitches in projects often occur when a new UI window
or screen is introduced. There can be many reasons for
this (e.g., because of the on-demand loading of assets
and the sheer cost of instantiating a complex hierarchy
with many UI components).

As well as trying to reduce the complexity of the UI
itself, consider caching such UI components especially
if they are used relatively often. Disable and re-enable it
rather than destroying and re-instantiating each time.

Disable Raycast Target when not needed

Be sure to disable the Raycast Target option on UI
Graphic elements that don’t need to receive input
events. Many UI elements don’t need to receive input
events, such as the text on a button or non-interactive
images. However, UI Graphic components have the
Raycast Target option enabled by default. Complex UIs
could potentially have a large number of unnecessary
Raycast Targets, so disabling them can save significant
amounts of CPU processing.

https://unity.com/solutions/game

31 | unity.com/solutions/game© 2019 Unity Technologies

We hope that the best practices and tips in this guide helped ensure your project has
a robust structure and that you have the right tools and workflows in place to design,
develop, test, and launch your game. As your needs evolve and deadline pressure
increases, be sure to seek other shared Unity resources.

Next steps

For more information

You can find additional optimization tips, best practices,
and news on the Unity Blog, at the #unitytips hashtag, on
the Unity community forums, and on Unity Learn.

Contacting Unity ISS

Need personalized attention? Consider Unity Integrated
Success Services. ISS is much more than a support
package. With a dedicated Developer Relations Manager
(DRM), your project will be bolstered by a Unity expert
who will quickly become an extension of your team.
Your DRM will provide you with the dedicated technical
and operational expertise required to preempt issues
and keep your projects running smoothly right up to
launch and beyond. To get in touch, please fill out
our Contact form.

https://unity.com/solutions/game
https://blogs.unity3d.com/
https://forum.unity.com/
https://unity.com/learn
https://create.unity3d.com/lets-talk-games?utm_source=ebook&utm_medium=pdf&utm_campaign=gaming_global_ebook_2019-12-gmg-ebook2-letstalk

	Unity 2:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:

